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The r e s i s t a n c e  coefficient is der ived f r o m  the hydrodynamic equations for  mul t iphase  
liquids by using an empi r i ca l  re la t ionship  for  the dynamic veloci ty  and genera l  s e m i -  
empi r i ca l  considerat ions .  

The r e s i s t a n c e  of g a s - l i q u i d  plug flow has been fa i r ly  well  invest igated exper imenta l ly  in [1-4]. 
None of them give a soundly based method of calculat ing the r e s i s t a n c e  in the case  of plug flow of a gas 
- l iqu id  mixture .  In the presen t  paper  the equations of motion of muir[component mix tu res ,  der ived in [5], 
a r e  used to find the hydraulic r e s i s t ance  coeff icient  for  plug flow of a g a s - l i q u i d  mixture .  By plug flow we 
mean  flows which have no dist inct  in te r face  (plug flows, plug flows with foam format ion ,  etc.). 

The equation of motion of a mul t icomponent  mix ture  a f te r  s impl i f ica t ion for  the case  of a unidimen-  
sional (in re la t ion  to the mean  values) g a s - l i q u i d  flow has the f o r m  [5] 

dp ~ d u' ' 
dx q- [Pz + ~ (P5 - -  Pl)] g cos (xlg) + dy dy (pzq~l tx Uty 

The t e r m  in the paren theses  in the equation of motion is  the turbulent  s t r e s s  of the g a s - l i q u i d  flow. In 
addition to the moment s  assoc ia ted  with one-phase  flow, the equation of motion (1) has mixed moments  be -  
tween the fluctuations of the veloci t ies  and concentra t ions  of the two phases.  

We put moments  of type pl-~lUl~xly, as  in one-phase  flow [6], in the following form:  

 lPluI ";  = d--V-' (2) 

- - d ; * *  (3 )  
r ~'P~NYu dy 

We a s s u m e  he re  that the t rue  gas content is constant over  the ent i re  c r o s s  sect ion of the tube. 

We expres s  the mixed moment s  between the veloci ty  and concentrat ion fluctuations in the two phases  
in t e r m s  of moment s  of the type P l - ~ l - ~ y  by means  of the re la t ions  

d~l~ (4) r T r, �9 , -  

w h e r e  fl and f2 a r e  functions which can be de te rmined  exper imenta l ly .  F igure  I shows the dynamic veloci ty  
w ,  of the mix ture  as  a function of the d i scharge  gas content fl for  different  Froude numbers  

T o (6 )  
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It has been exper imenta l ly  es tabl ished that  the l as t  two functions in express ion  (6) a r e  numer ica l ly  equal. 
The tangential  s t r e s s  on the tube wall  is  given by the equation [7] 

R 
�9 o = -YX-" T "  (7) 

The dynamic veloci ty  of the mix tu re  is connected with the d ischarge  gas content and Froude number  by the 
following empi r i ca l  express ion:  

( k l )  (k~=0.4), (8) 

where  w,0 = u,1 is the dynamic veloci ty  at /3 2 = 0. 

For  subsequent  calculat ions we need to exp res s  the t rue  veloci ty  of one phase in t e r m s  of the t rue  
ve loc i ty  of the other.  

The ve loc i ty  of the liquid phase is exp res sed  in t e r m s  of the veloci ty  of the mix ture  by the following 
rela t ionship:  

u, : U m 5  , (9) 

where  

um = u~l  + u~%, ~1 = 1 - -  ~ .  

Substituting equation (10) in exp res s ion  (9), we obtain: 

(Pi @i 

f r o m  which, using the re la t ionship  

1 -- ~i = lg2, 

we have 

and we finally obtain the following formulas :  

( lo)  

(11) 

(12) 

~ll ~ /'/2 ~ 

- ~ 1 ~  ( 1 5 )  

We a s s u m e  that the moments  of type ~lPlU[xU[v a r e  proport ional  to the dynamic veloci ty  w,0 , and 
- e - t h e  mixed moments  between the veloci ty  and concentra t ionf iuctuat ions  a r  propor t iona l  tow.0(fl 2 - ~2) exp ( - k  1 

/ Fr). 

We express the moments of type q)/ p/ U~xU/'y and the mixed moments between the velocity and concen- 
tration fluctuations of the two phases in terms of the turbulent viscosity of the mixture and the gradients of 
the mean velocities of the corresponding phases: 

- d~l.~ (18) ~plplU'iZ U;'/] : (PlPl~J,0y - - ~ '  

�9 - ~ , ~  (17) qhp2u2x us u = q%Pz• og ' gy " ' 

N i x  ( ~  _ ix)  e -k ' /% P, (~i U;x u~g t -  ~P; u~uu~,: + op; U;x u~y) = p~• ~ (18) 

�9 " U I d ~ 2 x  . .  - .  - - k l / F . r  P~ (q~ 2y -r ~'2u'2uu,,: + eP'2u~ u'2u) = P2• :--(p~te �9 (19) 
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The total s t r e s s  in the flow, equal to the sum of the viscous and turbulent s t r e s se s ,  is 

- - due~ [1+(13 2 ~2)e_~,/F~]. d/~lx - d~2 - d~lx [1 + ([~2 --~2)e--~'/Vr] -i- T2P• oY (20) 

Replacing the velocity of the gas phase in this express ion by the velocity of the liquid phase by using fo r -  
mulas (14) and (15), dividing it by the density of the mixture 

Pm ~- p~, + p2~-~ (21) 

and putting 

~-1~___~ + u ~J~ ,~, 
Pm Pm ~2~1 

Pl~-I [i +([} _~)e-k,/v~] + P ~  ~,[l_ ~ l1 +([}2__~,)e_~,/F~ ] = B ,  
Pm Pm (P21~1 

(22) 

we obtain the following differential  equation for  the gradient 

Integrating it, we have 

a t y  = k  

of the mean velocity of the liquid phase: 

dulx (23) . u~** o = (vg + • oyB ) dy 

/~lx=-- --~--W*O [1 + (I]~--~2)e -k*/Fr ] ln(1 + •  ogB)v____Z__ (24) 

u1~ = "-1o, (25) 

where ul0 is the velocity of the liquid phase at the level of the mean roughness height. It was assumed in the 
integration that ~1 and ~2 do not vary  over the c ross  sect ion of the tube. Determining the constant of inte- 
gration f rom the boundary condition (25) and substituting it in equation (24), we obtain 

ul~ [1 + (83 - -  ~)  e-k'wv] 1 + • oYB 
- -  I n  v g  . 

w ,  o • 1 4- •176 + b, (26) 
Yg 

where  b = ul0/w,0 is a function which can be determined experimentally.  

To find a theoret ical  equation for the p ressure  gradient we replace  the dynamic velocity in Eq. (26) 
by its value given by express ion (6). We then have 

1 + • 
- - 2  - -2 1 + (~2 - - ~ ) e - - k ' / v v  Pl (bY1 +P2tP~ v2 In vg 1 

•  oBk - + b = - -  �9 o ~B ! + 2 V~-m'  
Yg 

(27) 

where Yv is the coordinate of the mean velocity of the liquid phase. Replacing the tangential s t r e s s  in 
this express ion by the p ressure  gradient f rom (7) and squaring the obtained relat ionship we obtain a theore-  
tical equation for the p ressure  gradient in the plug regime 

- - - -  2 --~2 
d-p ~. (~)1(~1~)i -~ P2(P2 2 (28) 
dx --  "'m 2d " 

We find the hydraulic res i s tance  coefficient f rom formula (27) 

1 + xw*~ 

1 _ 211 + ([~2--~)e--k'/Vr] In vg + b. (29) 
V - ~ m  • 1 ~ ~r176 

'Vg 
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Fig. 1 Fig. 2 
Fig. 1, Dynamic veloci ty of ga s - l i qu id  flow as function of discharge gas content and Froude 
number of mixture  (tube with d = 100 mm): 1) F r  = 0.4; 2) 0.8; 3) 2.0; 4) 4.0; 5) 8; 6) 20. 

Fig. 2. Comparison of theoret ica l  and exper imenta l  data for  hydraulic r e s i s t ance  coefficient: 
1) F r  = 0.4; 2) 2; 3) 4-20 (d = 50 and 10 mm). 

We neglect  the I in the numera tor  of the logari thm and f rom Eq. (29) we obtain 

1 2 [1 § (~2 --~u) e-kCF'] r vg k ] 
-- = l n | •  *0 B + - ~ - ~ b j .  (30) 

V~m ~B 

We replace  the dynamic veloci ty  in the denominator  of the logari thmic express ion  by the mean veloci ty of 
the liquid phase, and the hydraul ic  r e s i s t ance  coefficient  by using the formula  

~V,o = U,l~ : v, ( 7  (31) 

and af ter  manipulation of the express ion  under the logari thm sign we have 

1 2 [ l + ( ~ u - - ~ e ~  .I In . _  § 
V;~  ~B R e , ~ - p % )  R ~ ( ~ + ~ b ) ,  ~ - / J  + ~-# + ~ ' (32) 

We put formula  (32) in the following form: 

1 - - A ~  [ l §  ] lg (33) 
Q 

Formula  (33) with fi = 0 becomes the Colebrook formula  for  a one-phase flow with coefficients A1, A2, and 
Aa, equal to 2, 2.5, ! / 2 . 8 ,  r e spec t ive ly  [8]. Substituting these coefficients in re la t ionship (33), we obtain 

V~-ml 2 [I ~ (i~--(~)e -~dFr] Ig II 2.5 ( ~ ~)~ ('~ II k ] } . (34) 

Function bwas determined by exper iment  and was 

- - -  0.2 

--  1 - - ~ 2  

Substituting the value of function b in the express ion  for the hydraulic res i s tance  coefficient  we have 

[~ +(~ -~-~)w"~'] I[ 2,5 ( ~, 
VT~ 2 -Ig 

§ 
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where 

lern 
1 +[(~2 --  ~ )  e--k'/Fr] 

Pm \%~1 / 

A comparison of formula (36) with the exper imental  data of various authors  is shown in Fig. 2. It 
is evident f rom Fig. 2 that the theoret ica l  and exper imental  data agree  sa t i s fac tor i ly  throughout the range 
of var ia t ion of the Froude number of the mixture  and the discharge gas content. 

Thus, by applying the general  equation of motion of a multicomponent mixture  and using it to close 
the semiempir ica l  theory  of turbulence we have derived theoret ica l  equations for  the fr ic t ion head loss 
in plug flow of a gas - l i qu id  mixture.  

dp /dx  

PA (2 ) 
~(2) = F~(2)/F 
FI (2) 
F 
~I (2) = Pl r (2)/dy) 
D(2) = ~I(2)/Pi(2) 
uI(2) 
u~,(2)x(y) 
~ (2) 
Nyy - -  

w ,  = ~/To/Pm 
T o 
p m  = pl l + 
R 

f12 = Q2/(Qi + Q2) 
Qi(2) 
~4 
Fr --  m/gd 
Wm= (Q1 + Q2)/F 
k 

Xm 
l 

NOTATION 

is the pressure gradient; 
is the density of liquid (gas) phase; 
is the true gas content; 
is the cross-sectional area of the tube occupied by liquid (gas) phase; 
is the c ros s - sec t iona l  a rea  of the whole tube; 
is the viscous s t r e s s  of liquid (gas) phase; 
is the kinematic v iscos i ty  of liquid (gas) phase; 
is the mean (at point) veloci ty  of liquid (gas) phase; 
a re  the fluctuational veloci ty of liquid (gas) phase along x and y axes;  
~s the fluctuation of liquid (gas) concentration; 
is the turbulent viscosi ty;  
is the dynamic veloci ty of the mixture;  
is the tangential s t r e s s  of the mixture  of the tube wall; 
is the density of mixture;  
is the tube radius;  
is the discharge gas content; 
is the f low ra te  of liquid (gas) phase; 
is the Karman constant; 
is the Froude number of the mixture;  
is the veloci ty of mixture;  
is the mean roughness height of tube wall; 
is the res i s t ance  coefficient of liquid phase at  fl = 0; 
is the res i s tance  coefficient of mixture;  
is the subscr ipt  for  summation for  each phase (/ = 1, 2). 
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